Total Acquisition in Graphs
نویسندگان
چکیده
Let G be a weighted graph in which each vertex initially has weight 1. A total acquisition move transfers all the weight from a vertex u to a neighboring vertex v, under the condition that before the move the weight on v is at least as large as the weight on u. The (total) acquisition number of G, written at(G), is the minimum size of the set of vertices with positive weight after a sequence of total acquisition moves. Among connected n-vertex graphs, at(G) is maximized by trees. The maximum is Θ( √ n lg n) for trees with diameter 4 or 5. It is ⌊(n + 1)/3⌋ for trees with diameter between 6 and 23(n + 1), and it is ⌈(2n − 1− D)/4⌉ for trees with diameter D when 2 3(n+1) ≤ D ≤ n−1. We characterize trees with acquisition number 1, which permits testing at(G) ≤ k in time O(nk+2) on trees. If G 6= C5, then min{at(G), at(G)} = 1. If G has diameter 2, then at(G) ≤ 32 ln n ln lnn; we conjecture a constant upper bound. Indeed, at(G) = 1 when G has diameter 2 and no 4-cycle, except for four graphs with acquisition number 2. Deleting one edge of an n-vertex graph cannot increase at by more than 6.84 √ n, but we construct an n-vertex tree with an edge whose deletion increases it by more than 12 √ n. We also obtain multiplicative upper bounds under products.
منابع مشابه
On Total Edge Irregularity Strength of Staircase Graphs and Related Graphs
Let G=(V(G),E(G)) be a connected simple undirected graph with non empty vertex set V(G) and edge set E(G). For a positive integer k, by an edge irregular total k-labeling we mean a function f : V(G)UE(G) --> {1,2,...,k} such that for each two edges ab and cd, it follows that f(a)+f(ab)+f(b) is different from f(c)+f(cd)+f(d), i.e. every two edges have distinct weights. The minimum k for which G ...
متن کاملThe maximal total irregularity of some connected graphs
The total irregularity of a graph G is defined as 〖irr〗_t (G)=1/2 ∑_(u,v∈V(G))▒〖|d_u-d_v |〗, where d_u denotes the degree of a vertex u∈V(G). In this paper by using the Gini index, we obtain the ordering of the total irregularity index for some classes of connected graphs, with the same number of vertices.
متن کاملTotal domination in $K_r$-covered graphs
The inflation $G_{I}$ of a graph $G$ with $n(G)$ vertices and $m(G)$ edges is obtained from $G$ by replacing every vertex of degree $d$ of $G$ by a clique, which is isomorph to the complete graph $K_{d}$, and each edge $(x_{i},x_{j})$ of $G$ is replaced by an edge $(u,v)$ in such a way that $uin X_{i}$, $vin X_{j}$, and two different edges of $G$ are replaced by non-adjacent edges of $G_{I}$. T...
متن کاملSigned total Italian k-domination in graphs
Let k ≥ 1 be an integer, and let G be a finite and simple graph with vertex set V (G). A signed total Italian k-dominating function (STIkDF) on a graph G is a functionf : V (G) → {−1, 1, 2} satisfying the conditions that $sum_{xin N(v)}f(x)ge k$ for each vertex v ∈ V (G), where N(v) is the neighborhood of $v$, and each vertex u with f(u)=-1 is adjacent to a vertex v with f(v)=2 or to two vertic...
متن کامل$k$-Total difference cordial graphs
Let $G$ be a graph. Let $f:V(G)to{0,1,2, ldots, k-1}$ be a map where $k in mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $left|f(u)-f(v)right|$. $f$ is called a $k$-total difference cordial labeling of $G$ if $left|t_{df}(i)-t_{df}(j)right|leq 1$, $i,j in {0,1,2, ldots, k-1}$ where $t_{df}(x)$ denotes the total number of vertices and the edges labeled with $x$.A graph with admits a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Discrete Math.
دوره 27 شماره
صفحات -
تاریخ انتشار 2013